

WIndiana 2010 Indianapolis, IN

Energy Center at Discovery Park
July 22, 2010

Our Research Vision

Smart Wind Turbines & Farms

that can sense, predict, and control their own performance & reliability

MEMS bimorph temperature sensor

Simulation Based Models

that can help engineers and owners optimize wind turbines and wind farms

Our People

Rotors/fluid-structure

Reliability/ maintenance

Sensing

Power electronics

Noise

Alternative drive trains

Research Facilities

Anechoic Wind Tunnel

HAWT Dynamics & Controls Testbed

Reconfigurable Micro Wind Farm (see poster in Exposition)

Research Facilities

Turbine blade test facility (under development)

Polytec 3D Laser Velocimetry System

Trillion ARAMIS 3D
Digital Image Correlation System

Numerous rotating machinery test rigs

Engineering Challenges

Enercon E-126
Germany 2008
6 MW - 127 m diameter
131 m tower

- 1. Mega-structures
- 2. Varying wind loads
- 3. Energy systems

Photo credit © Scott
Degraw/National Geographic
Television

Lifecycle costs

Equipment costs are usually only 5-10% of the lifecycle cost (service and maintenance costs)

(1) Quality control

Durability testing and factory and field inspections to ensure quality.

(2) Maintenance on demand

Unscheduled maintenance is 500% more costly than scheduled service.

(3) Autonomic logistics and control

Photo credit © Scott

Degraw/National Geographic

Television

Lifecycle costs

Equipment costs are usually only 5-10% of the lifecycle cost (service and maintenance costs)

(1) Quality control

Durability testing and factory and field inspections to ensure quality.

(2) Maintenance on demand

Unscheduled maintenance is 500% more costly than scheduled service.

(3) Autonomic logistics and control

Drivetrain Dynamics (Durability Testing)

750 kW gearbox drivetrain tested at NREL Wind Technology Center

Blade Inspection (Quality Assurance)

Courtesy Dr. V. Markov (Metrolaser, Inc.)

Photo credit © Scott

Degraw/National Geographic

Television

Lifecycle costs

Equipment costs are usually only 5-10% of the lifecycle cost (service and maintenance costs)

(1) Quality control

Durability testing and factory and field inspections to ensure quality.

(2) Maintenance on demand

Unscheduled maintenance is 500% more costly than scheduled service.

(3) Autonomic logistics and control

Diagnostic Sensing (Maintenance)

Courtesy powertransmissions.com

MEMS temperature telemeter (Sadeghi)

Peroulis et al., 2001

Photo credit © Scott

Degraw/National Geographic

Television

Lifecycle costs

Equipment costs are usually only 5-10% of the lifecycle cost (service and maintenance costs)

(1) Quality control

Durability testing and factory and field inspections to ensure quality.

(2) Maintenance on demand

Unscheduled maintenance is 500% more costly than scheduled service.

(3) Autonomic logistics and control

Turbine Dynamics (Control)

Turbine modeling (all modes within 8%)

Rotor monitoring (Sorian Inc., partner)

Aerodynamics (Performance)

- Wind Resource Purdue ASREC Facility
 - 50-m met tower data being analyzed
- Tower-Rotor Interaction Analysis (Fleeter)
 - Discrete Tones, Power, Fatigue
- Wind Farm Performance Optimization
 - Wind Farm Atmospheric Boundary Layer Interaction Modeling
 - Purdue Micro-Wind Farm
 - Turbine-Turbine Interactions & Control
- Small Urban Wind Turbines
 - Actuator Disk Theory
 - Single Rotor C_{p-max} = 59.3% (Betz limit)
 - Dual Rotor (VAWT) $C_{p-max} = 64.0\%$
 - Counter-Rotating Wind Turbine C_{p-max} = 84%
 - VAWT WL & Calumet

3D Sim & Visualization (Siting)

Team: Constantin Apostoaia, Chenn Zhou, Xiuling Wang, Dave Kozel

Research projects:

- Constructing 3-D wind field for rural and urban wind farms.
- Computational Fluid Dynamics simulation of wind turbines.
- Virtual reality visualization.

Wind field of northwest Indiana

Wind velocity and power density maps in North Western Indiana

Education and Training

Selection and siting of Bergey HAWT in Design Course

Design of rooftop VAWT

Wind Turbine Certificate Program

Group of courses from among set including "Intro to Wind Energy," "Benefit-Cost Analysis," "WT Dynamics and Control," etc.

VAWTs for Urban Wind Farms

Installing VAWTs at Calumet and West Lafayette campuses to provide test beds for student projects.

Testbeds for Education and Learning

Setting up portable HAWT for use by Purdue-IUB students, and working with Taylor University to study new HAWTs.

Internships

NREL & Sandia internships.

Conclusions

WIndiana 2010 Indianapolis, IN

Energy Center at Discovery Park
July 22, 2010

